Moving Toward Predictive Grinding

Presentation:

Daniel Hampton – CSX Transportation

Collaborators:

Eric Magel – CNRC

Robert Harris – Loram (retired)

It is essential to protect our most valuable asset

• Rail Grinding is an effective maintenance practice to control the effects of rolling contact fatigue, restore profile and maximize value from the rail asset.

•

Why we grind			
	Profile Correction	Surface Conditions	
Benefits:	 Optimize Point of Contact Less rail wear Less rail fatigue Prolongs rail life Less fuel Reduced vertical loads Less vibration Improved curving of wheel sets 	 Minimize Risk Allows ultrasonic testing to see internal defects Reduces vertical and lateral forces Reduces track surfacing cycles (CAT) Reduces rail fatigue defects (TD & SD Defects) Reduces Rail Service Failures Minimizes Derailments 	
HEAVY HAUL	BEMINAR * JUNE 7-8, 2017	WRI 2017	

Rail Grinding Planning

Current State

Frequency

+

Network => Scheduling Segments: Track lengths with common railcar tonnage, broken by route intersections or territory boundaries

CSX: 400+ scheduling segments

Ō

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

Metal Removal per Cycle

Subdivision/Prefix => track grinding Segments: each track is divided by boundaries such as mileposts, curve points, or change in prefix

CSX: 57,000 grinding track segments

Frequency Determination

- Frequency target given per scheduling segment
 - Tonnage and Curvature
 - 25-35 MGT Curves
 - 50-75 MGT Tangent
 - Preventative (single pass) vs.
 Corrective (multiple passes)
 - Route Criticality (Passenger, Hazmat)
 - Surface Defects (Rail testing data) dictate increased frequency

Meeting the Target Frequency

- Routing to obtain target frequency
 - Rail bound equipment
 - 2 rail grinding teams
- Routing Optimization Model

RG414 – 120 Stones

RGS9 – 24 Stones

RG403 – 120 Stones

RGS6 – 24 Stones

Obtain target freq, min travel

6

Pre-grind Inspection

- Grinding amount and where on the rail head is determined for each rail by track segment
 - What is the DESIRED RAIL PROFILE post grind?
 - CSX Templates (match common wheel prot
 - What is the CURRENT RAIL PROFILE?
 - Rail Inspection Vehicle equipped with KLD Labs ORIAN 8 (Optical Rail Inspection and ANalysis)
 - Software automatically applies template to current profile

Pre-Grind Inspection

- What is the CURRENT SURFACE CONDITION?
 - RIV uses the KLD Labs Railscope
 - Operator reviews images and MANUALLY inputs defects observed per segment
 - RCF: Light, Moderate, Severe
 - Software applies depth of template application (surface crack removal or surface defect removal)

Table 2 – Standard Minimum and Conditional Depths of Cut			
Condition	Rail	Depth of Cut	
Minimum Depth			
	High	0.006″	
	Low	0.006″	
	Tangent	0.006"	

Conditional Depth		
Spall – Very Light	All	0.002"
Spall –Light	All	0.006"
Spall – Moderate	All	0.012"
Spall – Severe	All	0.024"
Checking – Light	All	0.002"
0 0		
Checking – Moderate	All	0.010"
Checking – Severe	All	0.020"

Equipment Grind Plan

- How will we obtain the desired metal removal?
 - Grind pattern selection
 - Speed and downward pressure
 - Number of passes

Issue: Rolling Contact Fatigue - RCF

Incipient Cracks

Fully Grown Cracks

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

Issue: Surface Condition Interference

SSC/SDZ Defects – Lagging Indicator

Methodology for developing Predictive Grinding for surface

Goal: Develop condition based Predictive Grinding program

- Enable suppliers to use a standard scoring system industry wide (0-7 in severity), or ability to convert data to same scores.
- 2. Determine how many MGT it takes to go from score to score.
- 3. Determine when action is needed based on scoring.

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

WRI 2017

Data Alignment

- 1. Enable suppliers to use a standard scoring system industry wide
 - Collecting and aligning data from multiple suppliers on test sites on the Jesup and Fitzgerald, so that machine vision systems, eddy current, magnetic induction, or other systems all can generate the same scoring.
 - Testing various degrees of curvature and tangent

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

WRI 2017

Surface Condition Scoring

Surface Quality Index (SQI) with corrective actions

Category	Description
0	None
1	barely perceptible, but clearly regular pattern (preventive grinding < 0.5).
2	clear, distinct individual cracks - but no pitting at tip (maintenance, depth < 1.0 mm)
3	clear cracking, pits up to 4 mm diam (corrective grinding 1.0-2.5 mm deep)
4	pitting greater than 4mm < 10 mm (preventive gradual, up to 3.5 mm deep)
5	isolated pitting/shelling/spalling > 10, diam (up to 5 mm deep)
6	Shelling/spalling: regular pitting, >10mm diam (busted, near impossible to catch up on)
7	Shelling/spalling: any defect > 16 mm diam, >20mm length

Surface Condition (RCF) Study

Jesup and Fitzgerald Subdivisons

Subdivision \ Lubricator Units	Top of Rail	Gauge Face
Fitzgerald	YES	YES
Jesup	NO	YES

WRI2017

RCF Data Alignment Study

RCF Data Alignment Study

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

RCF Data Alignment Study

Different technologies = different aspects of the surface condition

SSCs have deep cracking in center bands

Category	Description
0	None
1	barely perceptible, but clearly regular pattern (preventive grinding < 0.5).
2	clear, distinct individual cracks - but no pitting at tip (maintenance, depth < 1.0 mm)
3	clear cracking, pits up to 4 mm diam (corrective grinding 1.0-2.5 mm deep)
4	pitting greater than 4mm < 10 mm (preventive gradual, up to 3.5 mm deep)
5	isolated pitting/shelling/spalling > 10, diam (up to 5 mm deep)
6	Shelling/spalling: regular pitting, >10mm diam (busted, near impossible to catch up on)
7	Shelling/spalling: any defect > 16 mm diam, >20mm length

Eddy Current Technology

- a) Alternating current flowing through a coil generates a magnetic field around the coil
- b) Placing the coil close to conductive material, an eddy current is induced in the material
- c) A flaw will disturb the eddy current circulation, and through magnetic coupling with the probe defect length can be determined

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

WRI 2017

Eddy Current Data Surface Condition Scoring

Heavy

Severe

Severe

Heavy

Light

Severe

Severe

Severe

Heavy

Heavy

Severe

Heavy

Moderate

Moderate

All

2.5

4.2 1.3 1.7 2.1 2.7

11

33 33

07 0 0

2.9 1.7 1.5 1.8

0.6 0.7 0.8 0.8

0 0 0

1.4 1.4

13 31

0.7

1.4 1.6

1

Heavy 0.9 62.3 2.2 2.2 1.2 1.5 0.4 Light 0 n 62.8 Heavy 2.6 2.3 1.7 70.2 Moderate 1.5 1.1 0.8 0.5 0.8 0.8 0.5 70.8 1.5 0.8 06 Moderate 1.5 0 1.5 71.3 0 Moderate 0.6 0.6 0.6 109.3 0.5 0.6 0 0 Moderate 0.8 0.4 0.5 0.8 109.8 0.5 0 Severe 5 3.7 3.3 2.5 2.8 169.5 0.6 Severe 5 2.6 3.7 2.2 0.9 170.0 5 0 Severe 3.3 0.4 0.6 2.6 3.3 2.8 2.1 0 0 0 170.5 Severe 5 2.6 1.2 46 3.9 171.1 5 22 06

rack_Txt Depth DC_0 DC_1 DC_2 DC_3 DC_4 DC_5 DC_6 DC_7 DC_8 DC_9 Feet

2.5 0.8

1.4 3.6 3.5 0.7 0.8

1.4

1.6

3.2 1.5 1.2

1.5

0.5

0.8 1.1 0.6 4.2

0.5

2.4 1.1 0.6

4.2 1.7 0.7

0.9

0.7

0.5 0.7

1.6

0.6

0

2

0

1.1 0.4

11 04

0.6

0.6 0.5

0.7

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

2.6

3.2

3.7

4.2

4.8

5.3

5.8

17.4

18.0

18.5

19.0

19.5

20.6

21.1

21.6

05

04

1 0.7

0

0

0.7 0.5

0.4 0.4

0

0

05

1

Eddy Current: Pre-Grind / Post-Grind

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

.

Surface Condition Lifecycle Study

2. Determine how many MGT it takes to go from score to score.

 Collect eddy current data on the 119 continuous test loop to track and analyze surface condition growth on many types of curves, rails, and tonnage conditions along the 1,000 mile loop.

-		
Category	Description	MGT
0	None	?
1	barely perceptible, but clearly regular pattern (preventive grinding < 0.5).	
2	clear, distinct individual cracks - but no pitting at tip (maintenance, depth < 1.0 mm)	
3	clear cracking, pits up to 4 mm diam (corrective grinding 1.0-2.5 mm deep)	
4	pitting greater than 4mm < 10 mm (preventive gradual, up to 3.5 mm deep)	
5	isolated pitting/shelling/spalling > 10, diam (up to 5 mm deep)	
6	Shelling/spalling: regular pitting, >10mm diam (busted, near impossible to catch up on)	
7	Shelling/spalling: any defect > 16 mm diam, >20mm length	

HEAVY HAUL SEMINAR . JUNE 7-8, 2017

Big Data Analysis – Establishing Correlations

- **3.** Determine when and what action is needed based on the surface condition score.
 - Analyze defect data with the eddy current data to correlate scoring and defects.
 - Set grind frequencies and amount of metal removal per visit to prevent an SSC or TDD from developing.

Addressing surface issues

- 1. Obtain foot by foot surface condition scoring (SQI), instead of whole curve or 1 mile of tangent.
- 2. Use Dynamic Track Segmentation based on demand
- 3. Joint Operations Complementary Grind Plans
 - a. Use foot by foot scoring to develop an RGS grind plan that targets smaller segments needing additional work after the full track segment is ground by the production grinder.
- 4. Work with suppliers to develop road deployable small grinder/milling machine for mid-grind-cycle short segments that develop and interfere with ultrasonic testing

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

WRI 2017

Rail Grinding Planning

Future State

Frequency

Network => Scheduling Segments: Track lengths with common railcar tonnage, broken by route intersections or territory boundaries

CSX: 400+ scheduling segments

Metal Removal per Cycle

Subdivision/Prefix => Dynamic Demand Driven Segmentation: each track is divided by areas with similar demand (profile and surface variation)

Dynamic Track Segmentation

 Traditional Segments: Length of Curve, tangents broken by mileposts, curves, or a boundary (prefix, subdivision).

 Dynamic Track Segmentation – creates segments based on similar demand after inspection.
 More grinding

Dynamic Track Segmentation

- Traditional segments based on physical markers so operator knows where to change to next configuration: patterns, speed, downward pressure
- Executing Dynamic Segmentation requires accurate knowledge of where the pre-inspection equipment and the grinding equipment is located on the rail.
 - GPS, GIS surveys, redundant systems
 - Same technology enables performing a complementary grind using the specialty grinder (24 stone) behind the production grinder (120 stone)

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

WRI 2017

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

WRI 2017

Benefits: Closer to Optimal Rail Life

 Dynamic Track Segmentation – creates segments based on similar demand after inspection.

 Complementary Grind Plans – Allows detailed work on shorter segments to meet demand variation and maximize equipment productivity.

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

Rail Grinding Planning

Pre-Grind Inspection - Future State:

Grind Quality Index (GQI)

Profile Quality Index (PQI):

- Score accounts
 for variation outside
 of the tolerance.
- Good measure vs. template
- Cannot be used as a predictive measure

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

Grind Quality Index (GQI)

Profile Quality Index (PQI):

- Accurate profile prediction would allow grinding so the predicted wear brings the optimal profile mid cycle
- Results in more optimal wheel rail interaction for a longer duration.

		Standard	Predictive
	MGT	PQI	PQI
Post Grind	0	100	80
	10	90	90
Mid Cycle	20	80	100
	30	70	90
New Grind	40	60	80
	AVG PQI	80	88

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

WRI 2017

Summary: More Precise Operations

Planning Future State

Frequency

Network => Scheduling Segments: Track lengths with common railcar tonnage, broken by route intersections or territory boundaries

CSX: 400+ scheduling segments

MORE CLOSELY MATCH DEMAND

Metal Removal per Cycle

Subdivision/Prefix => **Dynamic Demand Driven Segmentation**: each track is divided by areas with similar demand (profile and surface variation)

Complementary Grind Plans

Moving Toward Predictive Grinding

QUESTIONS?

Presentation:

Daniel Hampton – CSX Transportation

Collaborators:

Eric Magel – CNRC

Robert Harris – Loram (retired)

HEAVY HAUL SEMINAR * JUNE 7-8, 2017

